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Abstract

A unified approach to the theory of correlations in a plasma

is presented, based on the BBKGY hierarchy. The theory is applied

to a one-component plasma with the Coulomb interaction modified

to include effects of the background. Closed integro-differential

equations in space and time are obtained for the two-particle

correlation function in both the strong and weak coupling limits.

In the weak-coupling domain, y << 1, the time-independent analysis

returns the well-known linearized Debye-Huckle result, where Y is

the plasma parameter. In the strong-coupling domain with \ 1,

the resulting two-particle 'total' correlation function exhibits

decaying oscillatory behavior for particle separation of the order

of the effective interparticle range.
\



I. Introduction

Various efforts have undertaken to describe one-comonent plasmas

in two extreme limits. These are the weakly (y << i) and strongly

(y 1) coupled domains. In the former limit many such efforts

have led to the linearized Debye-Hckle result,using kinetic 1,2,3

statistical mechanical' 5 ' 6, and numerical7 '8 '9 formulations.

In the strong-coupling domain, studies have centered around such

oroblems as plasma turbulenceI0 ,1 and electron correlations at metallic
19

densities". Each aproach has applied its own approximation of the

correlation functions to the BBKGY hierarchy in order to obtain the

dielectric response functior 3 . The function thus acquired is then em-

ployed in conjunction with the fluctuation-dissipation theorem to

obtain a self-consistent solution for the static form factor or, equiv-

alently, the pair correlation function-.

A more recent study and review of calculations concerning the

total internal energy of a one-component plasma in the strong-coupling

limit is presented by Gould, et al.1 5 Comprehensive expositions on

the state of the art of this subject have been given by Kalman and

Carini; 16 Baus and Hansen,
8 and ichimaru.14

The relevance of strongly-coupled plasmas to natural phenomena

s illustrated in Fig. 1. We note that, in particular, the strong-

coupling limit plays an important role in the descriotion of x-ray

olasmas, laser fusion devices, and in the interiors of certain super-

dense stars.

in the numeric a l work of Brush, Sahlin and Teller', the )aJ.

correlation function is evaluated over a _a-.e range of .values of

the plasma paramter, -,. They find that ,i:h increasing -'

. . . . . . .. ... . . . . . .. . I . . .. . .. I I I



correlation function passes from a Debye-Hckle form to a decaying,

oscillatory form. This numerical study further demonstrates that

the effect of the background charge is to alter the effective inter-

particle interaction away from the bare Coulomb force.

In the present study a unified formulation for the theory of

correlations in a one-component plasma is introduced which is valid

for weakly and strongly-coupled plasmas. The theory is based on the

B3KGY hierarchy and a sequential ordering of the correlation functions.

This ordering is specified in terms of the plasma parameter y. An

e-expansion imbedded within the ordering scheme permits an interactive

technique of solution and renders the analysis self-consistent.

To better incorporate the role of the neutralizing background,

the effective interparticle force is expanded about the bare Coulomb

interaction. This inclusion is motivated by results of previous

numerical studies.7,8 In both the weak and strongly coupled

domains, closed space-time integro-differential equations are

obtained for the two-particle correlation functions.

In the weak-coupling domain a time-independent analysis returns

the well-known linearized Debye-Hickle correlation function.
1 9

In the strongly-coupled domain a second-order differential

equation is obtained for the correlation function. The solution to

this equation exhibits a decaying oscillatory structure :or narticle

separations in excess of the order of the effective two-particle

interaction range. These purely analytic results are in very good

agreement with previous numerical work.
7

The essential components of this analysis are related as show.

in the flow chart given in Fig. 2.
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Ii. Analysis

A. Basic Formulation

We consider an aggregate of charges Ze in a uniform neutralizin

background. The sth equation of the BBKGY hierarchy, hereafter call

BY, is given by (see, for example, Liboff
17)ss

+ E..-i + 1 0 G. . (-I- - )] F

r (1)
ao s

o ' -"d(s+l) Gi s+Fs-l

Parameters are nondimensionalized as follows18 where barred variabli

are dimensional.

= roX, - p
_ ¢o _Z 2e2

G 0 G CD Z e 2(2)
-zj ' -r o Gij' o 0o(2

rom

Po

In addition,

po - C m C B T

The parameters a0 and Yo in (1) which emerge as a consecuence

of nondimensionalization are,

-= kBT ! r3 N
o o ' y = o;7 , n n(3)'0

Here and r° are, resoectivelv, the strength and range of the inzer

action -otential. For the case that ro = d' the Debye distance, t-he

coefficients - and y are t itten without subscripts.



The nondimensional. distribution is then given by19

Fs = (mC) 3vs? (4)s 

-
where V is the volume of the system and fs is the s-particle joint

probability distribution. The function F has the normalization,- S

fFs dld2. ds = 1 (5)

where ohase-volume elements are likewise dimensionless. The effective

force on the i t h ion due to the jth ion is Gij"

As noted in the introduction, it has been found in Monte Carlo

calculations7 that the net effect of the background charge is to

alter the effective interparticle force away from a simple Coulomb

form. Accordingly we write

G.. =x.. - - n7 6)o 1i 1 n
7ox. 7 n=I x4 .

(6a)
2ij = i - 3-j

The coefficient u is a parameter of smallness. The coefficients

bn will be addressed later in the paper. Note that the leading cor-

rection term in the series (6) has the effect of altering the magnitude

but not the form of the Coulomb interaction.

The correlation functions are defined through the Mayer expansions 0

F2(1,2) -- FI(l) F (2) + C2 (1,2)

F3 (1,2,3) = F1 (l) FI(2) FI(3) (7)

FI(1) C2 (2,3) 4- F1 (2) 32 c ,(l_ ,-2

C3(1,2,3)



One also writes

C 2(1,2) F F1 (l) F1 (2) h(1,2) (8)

where h(1,2) is the so-called 'total correlation function'

In the weak-coupling (or, 'zorrelationless) domain, one assumes

F IF 1 >C2> (9a)

By extension, in the strong-coupling domain we write

F F1 I < C17 << C 3 .. (9b)

These sequential inequalities may both be incorporated into the

single set of expansions,

F = V'FY(+F ( l)0**
1 1 1c-l .

C2 = ( 1) + .. ](10)

C3  (0)[C + CMD + ]

The E-factors follow standard perturbation procedure and permit an

iterative technique of solution. In (10) we have reintroduced the

plasma parameter,
3

r

which inthi instance serves as a bookkeeping index. With 1,.~

(10) is seen to return the weak-coupling sequence (9a), whereas wi-:h

YZ1, (10) yields the strong-coupling sequence (9b). Thus the expansiop

(10) serves as a unified description of plasma conditions. The Debve

distance ' d and plasma frequency pwhich enter (11) are given by

2 = 1 kB_ 2 4'ne Z,_
d 4-,(eZ)2 n p M

.2 2 2
d C



6.

With (11) we see that in the strong-coupling domain n-1/ 3 >> k,

so that in this limit the Debye distance ceases to represent the

range of the two-particle interaction.

It is convenient to introduce the "arameter

13 r aco 1/2
d (0) (12)

Consequently the parameter ao/'o that multiplies the interaction
2

integral in (1) may be rewritten as n

Another important plasma parameter found in the literature

is

? -- (Ze)2 /RBTa

41 3-y-n a3

It is related to y by

Y2 33

Using (12) we rewrite (1) in the more concise form

2

(K + o B )F IS F 
(13

S 05s S 7+7 sLl

Definition of the operators Ks , B and Is follows by compariscn

with (1). Furthermore we set

= o n (n)

n=o

I= nl (n)
s s

n=o

in keeping with expansion (6).

in the context of this formalism it is possible to summarize

the various possible limiting domains in the form of an a

17diagram as shown in Fig. 3.
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B. The Strongly Coupled Domain

In this limit we take 1 ~ I, and the relation y o gives

Sy". Thus BY, and BY2 become, in accord with expansion (7),
2

K1FI -- - 7T I[FI(l)FI(2) + C2 ] (15a)

(K2 + oB 2)[FI(l)FI(2) + C2] =

2 ^- T 12[F(l)FI(2)Fi(3) + F!(i)C2(j,k)

P(ijk)

+ C3(1,2,3)] (15b)

Here the symbol P(i,j ,k) denotes sumation over permutations of ijk.

Our chief aim at this point is to obtain a closed kinetic

equation for C2 (0)(1,2). To this end a study was made of the

z-dependence of the parameters % and -, with 1. It was found

that -(2 c -1/2 and *y 2 ., 1 are the simplest forms which give closure.

(See Appendix A.) Applying the expansions (10) and (14) to

(15) with these --dependencies of a, and gives the following

leading perturbative equations relevant to determining C,

- 3 I (o)C"(O) = 0 (16a)

27 (0),

" 7 !i F!(1)FI(2) 0 (16b)

I c " c (° - 2 i ( ) F 1 (i)C0o)(j ,k) (:7)
(K 2  o3 2P(ij'k)

Here we have written for F(). We note in passing that (7)

is a closed space-time kinetic equation for C (, (1,2). Con-

straints (i6a,b) are consistent with an assumption of spatial

homogeneity, so that we may write



7.1

C2(o)(i,j) = Fl(pi)Fl(pj)h(o)(xij) (18)

The right-hand side of (17) is simplified by virtue of (16a)

and the vanishing of any space integral over an isotropic vector

field. Consequently two terms survive given by

2R1 )2 1 (10) 1 2( 0 )-
RHS(17) -- - FI(2) F(!) -JI(! + FI(!) P ,(to -p

[Go to p. 8]
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where

bn2J1 (n, m )  fd3 G13 (n)h(x 3 ) (19a)

b (nm) d3 G23(n)h(m)(x 13) (19b)

With reference to the results of Appendix B, we may write

(dropping the superscript on h)
-2f~

Jl(10) - 471Z xJo d o2h(;) (20a)

(1,0) - (1,0) (20b)

Here and henceforth we set x =_ x12 .

With (17) and (19) in (16) we obtain

(0)
(K, + a B2  )F,(p 1 )Fl(P 2 )h(x)

(21)

-- 'Y 'P_2 Fl(P ) F l(p1 2) •x x do h(p)
I~ ~P Jo

In the space-dependent part of K2 we use the transformation

xI + x2 =l x I  2

in which case

K2h(x) = x • " - x n(x) (22)

where we have neglected the time derivative in K2 . With the repulsive

bare Coulomb interaction, it follows from (6) and (14) that

-I-2 - (23)

Employing the preceding two expressions in (21) gives
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) 32l h(X) + -a [.- ; j Fl(pl)Fl(P2 )x•(Pl - P2)FF x ao * x 7p -- 2-

2 r-FI (Pl)Fl (p 2 ) x x - f d 2h()

(24)

Assuming finally that is isotropic in momentum space, we may

write

Fl(p) p F (P) (25)

and (24) becomes

~ •i PLFI h() + aoX2 F1 P 2) h(x) -4--- F1 (P 1 )

2 2 F1 (P 2 ) _ Fl(P2)

y + c x J P-(26)

=x h(x) + ox 2  P2 h(x) ,p2 F )

2 2  -2 -- d 2h
-b .- 3-F (l)) f d h()(6

-i- 1( 2) 2 F2h(3)]

- b1 Y P2 ;P2" "

Operating on this equation withfdp2 eliminates the RHS, and since

x is generally nonvanishing, there remains

FI(p I ) .,h(x) + -. h(x) PI -Pl F(p)
p1 p1

S
2 ( 2 ' F,(p1 ) x- 2 h(2) =0 (7)- bl i P 1) ( p !  2f xd-- 0

Integration over p, gives

2 2 x 2h
_i 2 .2 d-2

-x h(x) - 0 YX 2h(x) +-b I Y: d =1 Y 0 (23)

where
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v29
-Jdpl F F(p 1 ) (29)

and may be assumed positive.

Differentiating (28) with respect to x gives

2a Y2  
2-2

h"(x) + 0 h(x) - Y x 2 h' (x)
X3 0

+ b 2 2 Y[h(x) - 2 do 2h0) j 0 (30)
x o

Using (28) to solve for the integral term in (30) yields the

differential equation

h" + [2y' - <y h' + h = 0 (31)

where

y - kx k = b1 Y-r 0 - o2k (31a)

Employing the transformation 23

h(y) = - 7 u(y) (32)
y
-= <2

in (31) gives

2
u" + (I - -)u = 0 (33)

y

This equation is Schroedinger-like in form and we may conclude
24

2 2
that for 7 > a, h(y) is oscillatory, whereas for y , h(y) is

exponential. The explicit form of the solutions in these domains may

be obtained in two extremes:

>

We are left with

U 1" + U = 0

which has the solution

u = A cos v + B sin v



With (32) we obtain

h>(y) - ec/ 2 y A sin y + B cos y (35)

yyy2 << C

In this case (33) reduces to2
U"-a u - 0 (36)

Y

which has the solution
24

u(y) = y(A ea/y + A e- a/y )

With (32), this gives

h<(y) = A e-< /y  (37)

where we have set -= 0 because (31) does not allow a constant

solution. As previously noted, the oscillatory behavior (35) of

h(y) in the domain y2 >> a, is in very good agreement with

previous numerical studies7'8

We now estimate the value of the leading

coefficient bI in (6). This is accomplished through comparison of

the wave number K (defined below) of h>(y) with the numerical value

kC obtained in Monte Carlo studies7,8 These results imply that in

the vicinity of y 50 (i.e., 7 10)

L7 ., 1/3 32M a/ a3  3/4-,n
kMC a - "/dy  a

1.5 , z8.4

The wavenumber K is given by

(38)
k bY

o ro

From (11), "d = ro/Y. Furthermore, assuming a >Maxwel2ian fo-m for

t
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F,(pl) gives Y - 1. With these values

K- bl/X d

and comparison with kMC yields

bl y : -V-/3 o-0.17,-1/2

which with the values cited above gives b1 = 0.8. With this result

at hand, we may estimate the value of interparticle separation at

which oscillation of h(i) ensues. Such oscillation was found

from (33) to occur for

2
y > K/2

or, equivalently

(FJ) ' 2b1Y(

Inserting our previous finding

bly = I 2/3 2/3

gives

1/3.X> /y

Thus oscillation of h(x) may be expected for interparticle

displacement greater than or equal to the range of the two-particle

interaction. The initiation of such oscillation may be interpreted

as the onset of phase transition in the plasma7 .3 2 Furthermore

the wavenumber K of these oscillations (38), is seen to grow with

y. This behavior may be associated with the fluid-solid phase

transition3 a: large y , found in tunzerical studies.'' 34

Nowk.
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C. The Weak-Coupling Case

This situation has been studied by many individuals 1- 9 and

as we have noted previously it gives the linearized Debye-Hickle

result. In the kinetic domain this limit yields the Vlasov equa-

tion, or more generally, the Balescu-Lenard Equation.
2 6 -3 3

An essential element of these studies is that the correlation

functions are assumed to be perturbativelv small. Accordingly we

set Y - in (10). Insofar as r° = Xd in this limit, it follows

that 2 2 a/y = 1, which fixes a- z We note that this limit is

equivalent to the classical Rosenbluth-Rostoker ansatz.31 With

these constraints and a ~ £, (6) gives the following leading

equations for C2 (o) as derived from (13)

22A^ 0 2 ^ 0 (0) FI(0)
K F (o) - _ i!(o)F o (39a)1 1 4-r 1 1 1

(39b)
KI.F 1 ()) = - f2 ()cC 2 ((, 2)+sF 1I(O)(!)FI(l)(2)+FI(i)(!)FI(O)(21]
A (0[ o0 1 (o)() (0)

K 2 [C 2 ()(l,2)+F(°)(1)FI(1)(2)+FI(!)(1 )FI()(2)F + 2( FI (1)F I  (2)=

(39c)
-'2(o) F Fl(O)(i)C9 (o)(jk)+ F(O)(i)F(o)(j)F(1)(k)

4P P(ijk) - P(ijk)

We must solve (39) and (40) simultaneously for C.()(L,2).

First note that (39a) may be rewritten in two equivalent ways:
(^ ) F(() (12( ) I ( ) F (0) ( o ()

F)) (2): (o) 4. )(l)F1 (O)(3)

() () ()MK- 4 F I )I ! (2)F1 F, (3)



13.1

Similarly (39b) gives

2o (^ (o)0) (0)F°)(2)9()F! ( ( )  - F (0)(2)Il o)(l)[C 2  (1,3) +

1 ~ 4- 1

FI (°)(l)FI(1)(3) + F I ()(1)FI(°)(3)]

()(i) 2 (0) (0) (+)

FI  (1)KI(2)F I  (2) -F Mi (2)[C7 (2,3) +

FI(°)(2)FI( 1 )(3) + Fl(1)(2)FI(0)(3)]

Adding these four equations and subtracting the result from (39c)

yields

A ( ) ( ) ( O) (O) 2 ^ (o) " ( ) ( )

2 2 1 1 4- 2 P(ijk) 1 )2

1  (o) ( 0)C2 ( ° ) () o)() (0) (o)Fl1(°) (2)I 1l L (1,3)-F I  MII (2)C 2  (2,3)-

Four terms remain on the REIS of this equation. Of these, two vanish

by integration of the isotropic vector field G leaving

^c(0) (oF (o) (o)

K(C) 0 (1,2) + )B)F (

4 (o (o) (1)C (2,3) + (2)C2 (,3)

Here we have obtained (as in the strongly-coupled analysis) a

closed sDace-cime-dependent equation of mozion for C ( ° ) . The

PiS of this equation simplifies to

RHS(40) :F- - F (0)(2) - () .)i (0,0)

(41)

(0) 'p (0- 2 j 00



13.2

where the j integrals are defined in (19), and again we find that

l(0,0) 47,x x-2f 02h(P) (42a)

J1(0,0) = - (0,0) (42b)

[Go to p. 14]
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Substituting (18) and (42) into (40) we obtain

K2 F1 F1 h(x) + 2 (F)F =

2[ 3 1^ -2 rx :22 I FIF I • x x do ¢2h(,) (43)

Making use of (22) and (23) in the LHS of (43) gives

x • (Pl - D)FFlh + ax •x2

x. *~~~* t..Lii 3 72P2 .

FFl • _ do 2h(P)

(44)
Furthermore, with (25) the preceding equation becomes

IF a FI(P 2 ) F
X.P,[F i h +

pIFI fx x Pl Pl

2 FI(P2) F( 2 f F m)

[~~ ~ , F(P I )

S P F2 IF -x h + 2 P2 (P2)

2 F 1 (pl) 2 x 2

+ P (P 2 ) dc 02h(.)
P2 0

Repeating the procedure leading to (27), we find that (45)

yields

_i h -, IP )  2 1 _2_d h()-
F1 (p1 ) h + (PI) F (p)FP I Pl Xp- 1 o

Integraticn over p, gives

- -y2 2y2-2 d- h 0

x (o

Differentiating (4,7) leads t.o



h" + 7 Y + 2 fo do o 2 h() - 2y2h = 0 (48)

Combining the last two equations gives

h" + - h = 0 (49)
y

where

y =Yx (49a)

The general solution to (48) may be written

h(y) = DI + D 2 (50)

We need to affirm that (49) is a solution to the parent integral

equation (47), which in terms of y is

d h - [ aY3 r + fdy y2h(y) = C (51)

Inserting (49) into (50) leads to the constraint

D + D2 = - Y3 n (52)

Setting D2 = 0 for physical reasons leaves the solution

h(y) = 'y3I ey (53)

y 
(3

For a Maxwellian, Y = 1. Furthermore, in the present limit we

recall that n = 1, so that y = x, and (52) may be written

e-x
h(x) e 54)

This is the well-known linearized Debye-Hickle result3 5  which

follows to first-rder in a from an expansion of the more precise

nonlinear Debye-Huckle form

h(x) - e" d(x) - 1 (55)

where
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-x
xe (55a)

d ~xI
Whereas the Debye-Huckle form (54) agrees with the linearized result

(53) for x >> 1, we see that at the origin h(x) diverges, but hd has

the correct value hd(O) = - 1.

III. Conclusions

We have described a unified formulation of correlations in a

one-component plasma, based on the plasma parameter y, which is valid

in both the weakly and strongly-coupled domains. The theory is

based on the BBKGY hierarchy together with expansions of the two-

particle interaction and correlation functions.

In the weak-coupling domain, the analysis returns the familiar

linearized Debye-Hickle correlation function. In the strong-coupling

domain a second-order differential equation for the total correlation

function is found which yields an exponentially damped solution near

the origin. For particle separation on the order of the range of the

two-particle interaction, the equation gives a Bessel-like oscillatory

solution. These features of the correlation function are in excel-

lent agreement with previous numerical studies.

In both domains, closed space-time dependent integro-

differential equations were obtained for the two-particle correla-

=ion functions. We anticipate that future study will find im~or-

tant applications of these resul.ts both in plasma and ccndensed

matter physics.
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Amoendix A

Here we examine the decoupling condition on y employed in

Section B. With expansions (6) and (10) in BY, (15b), we write

BK F + -n.C(n)i
2 0 t0 9 K1t 1* _

(Al)
.2 0 _ ,2 2m m0

'-j =r)KF ,-. nc(n) + -

4' Ir=0 2 1l n=0 2=
L 

__

The 7, functions are expanded as in (10). We seek a kinetic

equation for C( 0 ) consistent with a =0(1). In general, such an

equation includes K, 3 and I terms. The mere requirement of a k

term indicates that the equation sought must be 0(y), which leads

to the condition

= r3y = y = 'I y (AZ)

The leftmost equality gives t= 0, with u#i. This specifies inclu-

sion of the, 0) term in our equation. The rightmost equality gives2

;r y = 1

The simplest choice which includes effects of the background is

r =1 which specifies inclusion of the i. :ern and

.. . = (A.')

(A3)

Finally, decoupling the I(1 )c(0) term from all other C(n ) terms2 2
'in the R!HS of (AI)] requires that

c , - (A4)

0 (A5)
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These relations give, respectively,

uq-ln # 1 q : 0 , n 1 (A6)

ys-i E U s 0 , m > 0 (A7)

Using (A3) in (A6) yields

,f , n/2(q-1) q 0 , n -; 1 (A8)

The strong-coupling condition 1y 1) requires

> , q 4 0 , n > 1 (A9)

This allows as the only possibility, q=0. Therefore, (A8)

requires

:-n/2 n 1 (AIO)

Similarly, with (A3) in (A7) it follows that

m/2s-3 0r - > 1 , n 0 , 0 (All)

This leads to the cases s =0,1 and thus

1( . -m/3, :,-m  m > 0 (A12)

Combining results (AlO) and (A12), the final conditions on -, are

summarized by

-a/b a 2 m .
- (A2)

here m 0.

moI . .
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Any one of these allowable orders of - leads to the sought-after

decoupled equation for C.0  in the strong-coupling limit. in this

analysis we select the simplest case: a=1, b=4, corresponding

to

2 - /
(2 = 12 (A14)

[Go to p. 20]
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Appendix 
B

Consider the integral (19a). We set

-- 23 - 2 - x3  (BI)

+xx13 z +x

in which case for n = 1, m = 0, we find

(1,0) _ dj h( j ) (B2)

In spherical coordinates with

do -2 sin a dO do do

• x xp cos 0 (B3)

io + x1 = (p + 2x*a -I x

and x held fixed along the z-axis throughout the integration we

obtain

(1,0) 7 dl: 2 h(p) fd- sin (2 + 2xzcos 3 + 2

Performing the 3-integration gives

(1,0) -- 2t d 2 2]

or, equivalently,

2] 2
(1,0) = - 2- dJo h() (p - 2xo + x 2  

- (: - 2x: + x)/o x fo
= - 2" f dc -h(o) z - x, + Xj

O' x d -- h(z) + d- :h(z)

Ac



.... . .. ... . -- " ... 2 1 1

Differentiating, one finds

A.
I 0 )  4 x - 2  x 2

- - 4 x d o ( ) (B4)

in agreement with (20a).

For the integral (19b) we set

0 = x - x3  (B5)
1~3 l '3

x23 x

which leads to

(1,0) - fdc h(o) (36)42 x 12 - x,,

Repeating the preceding calculations gives

42(1,0) . - z (1,0) (37)

We turn next to the integrals in (41), in which case n = 0, m = 0.

With (B1) we find

(0 0  - fd h(-) (B8)

and with (B5) we obtain

J2(0,0) = _ f h() (39)

Following the analysis above gives

-2 x 2hi'(0,0) 4- X x 2 ; (.)
.L- fx a h:

(0,0) = _ (0,0)
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Figure Captions

Figure 1

The plasma parameter y for n and T (with Z = 1) showing

weakly and strongly coupled (shaded) domains.

Figure 2

Flow chart explaining the analysis.

Figure 3

%o 
"Y plot showing weakly coupled (WCP) and strongly

coupled (SCP) plasma domains.
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